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leaves P'I unchanged, in agreement with the 
requirement 

° '1 /  X o'! / 
(50) 

Similarly, if the point marked p~ in Fig. 3 now 
represents the direction of any position vector d, then 
d may be augmented to homogeneous coordinates 

and the normalized 4-vector ~ contains all the infor- 
mation in d. Forming the product R2d is seen to be 
analogous to forming $2~. In this sense the transfor- 
mation of a position vector d and the compounding 
of two rotations are seen to be equivalent operations• 

The vectors +[1000], +[0100] and +[0010] rep- 
resent 180 ° rotations about each of X, Y and Z, and 
+[0001] gives the identity. It follows from (9) that 
the first three rows of S, regarded as p vectors, corre- 
spond to the rotation p followed by 180 ° rotations 
about each of the reference axes, and the columns 
likewise correspond to p preceded by 180 ° rotations 
about them. Letting p~ be the first row of S and P2 
the second column allows the corresponding 0 to be 
identified as the angle between the unrotated X axis 
and the Y axis rotated by p, consistent with (45). 

The top row of S, as already stated, is the p vector 
which corresponds to the rotation p followed by a 
rotation of 180 ° about X. This compound rotation has 

p vector [ - o ,  u,-At, A] and the corresponding S 
matrix is therefore 

::) o" - A  

p -At 

In the original rotation o. is algebraically distinct 
from A, /x and u in the ways in which it enters into 
the equations that arise. However, this example shows 
that the four rotations (the original, and three pro- 
duced from it by compounding with 180 ° about X, Y 
and Z) collectively form a set in which A, /z, u and 
o all have equivalent status and none is unique. 

I am indebted to Drs A. D. McLachlan and R. 
Somorjai for helpful discussions. 
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Abstract 

An efficient algorithm is described for finding the 
maximum entropy density distribution under the con- 
straint that (Y.] Flcos  (2~rh. r -  ~o)), where the sum is 
over a subset of reflections whose phase has been 
determined, is constant. This algorithm is combined 
with solvent flattening in a procedure for extending 
phases to higher resolution. A test of the procedure 
on the structure of ribonuclease A and its application 

0108-7673/88/020216-07503.00 

to the determination of two previously unknown 
structures are discussed. 

Introduction 

In crystallography, as in other branches of physics 
such as spectroscopy and radio astronomy, the 
observable data depend on Fourier transforms of 
density distributions that the experimenter wishes to 
determine. Because only the amplitude, not the phase, 

© 1988 International Union of Crystallography 
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of the Fourier transform can be measured, and that 
only in a limited region of transform (reciprocal) 
space, and because the data are subject to random 
statistical fluctuations, the inverse transform that 
gives the density distribution is often poorly defined. 
In the study of biological macromolecules, various 
methods that have been described by the term 'density 
modification' have been used to try to improve the 
definition of the density map by incorporating prior 
knowledge in the computation of the inverse trans- 
form. The methods fall into several classes. 'Solvent 
flattening' (Wang, 1985) makes use of the fact that a 
protein is divided by a smooth surface into a protein 
region and a solvent region, in which the density is 
essentially constant at a known value. 'Wiener filters' 
(Wiener, 1949; Bode & Shannon, 1950; Robinson, 
1967; Lacoss, 1971; Collins, 1978; Collins & Mahar, 
1983a, b) make statistical predictions of the values of 
unobserved Fourier coefficients on the basis of the 
observed ones. A method that has become known as 
the method of maximum entropy uses information 
theory, as developed by Shannon (1948) and Jaynes 
[for a review see Jaynes (1979)] to obtain a distribu- 
tion that is consistent with the observations, but is 
' "maximally noncommittal" with respect to all other 
matters'. 

The maximum entropy method has been applied 
to the crystallographic problem by Collins (1982), by 
Wilkins, Varghese & Lehmann (1983) and by 
Bricogne (1984). Wilkins (1983) gives a numerical 
procedure for the solution of the maximum entropy 
problem by means of a 'single-pixel approximation'. 
This procedure, however, requires the iterative sol- 
ution of a rather badly behaved transcendental 
equation for each pixel individually, which becomes 
cumbersome for macromolecular problems. This 
paper describes an efficient algorithm for the determi- 
nation of a maximum entropy density distribution 
under the constraint that (~[ Flcos (27rh.r-q~)) is 
constant, where the sum is over a set of structure 
factors for which the phases have been previously 
determined. This algorithm is combined with solvent 
flattening to refine and extend phases to higher reso- 
lution. The procedure has been used successfully to 
reproduce the structure of ribonuclease A, starting 
from low-resolution phases, and to produce readily 
interpretable maps of the previously unknown struc- 
tures of calcium-containing fragment 1 of bovine 
prothrombin (SjSlin, Alenljung, Svensson & Prince, 
1988) and of fragment TR2C from bull testis cal- 
modulin (Sj61in & Svensson, 1988). 

Mathematical analysis 

Consider a unit cell with volume V divided into N 
map elements, commonly referred to as 'pixels', with 
the mean density in the kth pixel denoted by Pk. The 
maximum-entropy approach consists in finding the 

maximum of 
N 

S=--  ~ Pk In (Pk/qk), ( 1 )  
k = l  

subject to the constraint that the sum of (V/N)pk  
over the unit cell must be equal to F(000), and to 
one or more further constraints that require at least 
approximate agreement with the diffraction data. In 
(1) the quantities qk represent a density distribution 
inferrred from prior information. Although various 
workers have considered how such prior information 
might be used to produce a nonuniform prior density 
(Bricogne, 1984; Collins, 1985), the analysis that fol- 
lows assumes that the prior distribution is uniform, 
so that the terms in the sum reduce to Pk In Pk. 

The most detailed analysis of the problem is due 
to Bricogne (1984), who suggests that the additional 
constraints be the individual fitting of many structure 
factors, with the phases of some and the amplitudes 
of the rest, with the maximum-entropy criterion being 
used to determine additional phases. He observes that 
there is a problem with phase extension, owing to the 
fact that there may be multiple sets of phases that 
have approximately the same entropy. Because this 
approach also becomes computationally unwieldy 
in macromolecular structures, Wilkins, Varghese & 
Lehmann (1983), following Gull & Daniell (1978), 
advocate using a 'weak' constraint of the form 

M 

Z [([Foj-Fcjl)/cS] z<-m, (2) 
i=1  

where the sum is over some subset of order M of the 
observed data, so that the distribution is statistically 
consistent with the observations. Previous workers 
have implemented this constraint by finding the 
minimum of a function of the form 

N M 

Q(P,A) = 2 pklnpk+(h/2)  2 [(]Foj-Fcj[)/°)] z, 
k = l  j = l  

(3) 
where h is commonly referred to as a Lagrange multi- 
plier, although its actual use in practice seems to be 
as a relative weight between an entropy-maximization 
process and a least-squares process. [Note that h 
appears as a constant factor multiplying the weights 
in the least-squares part of the expression. If h is 
small, a perfectly uniform distribution will satisfy the 
inequality in (2), and the constraint does not apply. 
If h is large the procedure reduces to a restrained 
least squares, with the entropy as the penalty function. 
Only if h has exactly the value required to hold the 
sum of squares constant can it be considered to be a 
Lagrange multiplier. Although numerical methods 
exist for finding that value, they are computationally 
inefficient, and, as we shall see below, there are other 
approaches to the application of constraints that 
avoid the problem altogether.] 
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Constraints may be applied in a minimization (or 
maximization) process by partitioning parameter 
space into a constraint space spanned by (that is, 
reachable by a linear combination of) the constraint 
functions and a null space orthogonal to it. If a fitting 
algorithm starts at a point at which the constraints 
are satisfied, a feasible point, and makes moves only 
within the null space, the constraint conditions will 
remain satisfied. Alternatively, if the conditions for 
a stationary point in the null space can be expressed 
in an analytic form, a search can be made in the 
constraint space for a feasible point. An efficient 
means of making the partition is the variable-reduc- 
tion method (Gill, Murray & Wright, 1981). To see 
how this method may be applied in the present con- 
text, consider an electron density map divided into 
N pixels, the densities in which are constrained to 
obey n constraint relations, f (p) = ci. Define an n x N 
constraint matrix, C, by 

C,k=Of(p)/Opk, (4) 

and partition C into an n x n square matrix, V, and 
an n x (N  - n) matrix, U, so that C = (V, U). Columns 
of C must be chosen so that V is non-singular. They 
are indicated here as the first n columns for con- 
venience, but actually may be any set of n columns 
of C. The ( N - n )  rows of 

z = [ - ( v - ' u )  ~, l], (5) 

where I is the identity matrix of order ( N - n ) ,  are 
orthogonal to the rows of C, and therefore form a 
basis set for the null space of the constraint relations. 
Note that the matrix Z is extremely sparse, having 
only (n + 1) x (N - n) nonzero elements out of N x 
( N - n ) .  

It is instructive to consider the solution by this 
method of a small hypothetical problem considered 
by Jaynes (1979). In this problem a standard die is 
cast many times. No record is kept of the number of 
times each face of the die appears on top, but only 
the long-term average number of spots per cast. If 
the die were fair, the expected value of the number 
of spots per cast would be 3.5, but in this case it is 
obs,,rved to be 4.5. The problem, then, is: what is the 
maximum-entropy distribution of probabilities, pi, 
subject to the constraints 

6 

2 P~ = 1 (6a) 
i=1  

and 

For this problem 

6 

ip, =4.5? (6b) 
i=1  

C =  2 3 4 5 

and 1-2100!] 
2 -3  0 1 0 

Z =  3 - 4  0 0 1 " (7b) 

4 -5  0 0 0 

(Note that Zjl + Zj2 = -1 for all j). For the maximum- 
entropy distribution of the pk'S we require a stationary 
point of Y~ Pk In Pk in the null space of C. The rows 
of Z define a set of basis vectors for this null space, 
and the necessary and sufficient condition for a 
stationary point is that the partial derivatives of 
the sum with respect to moves parallel to each of 
these basis vectors vanish individually. Because 
a(Y~ pj In pj)/apk = In Pk + 1, this condition is satisfied 
if 

l n p k = ( k - 1 ) l n p 2 - ( k - 2 ) l n p ,  for k - -3 ,4 ,5 ,6 .  

(8) 

Thus, the logarithm of any Pk is given as a linear 
function of two of them. Equation (8) may be 
rewritten 

lnpk=lnpl+(k-1) ln(p2/pl ) ,  (9a) 

o r  

P k  = pir ~k-l), (9b) 

where r--P2/P~, so that, when the partial derivatives 
of the second constraint function with respect to the 
pk'S a r e  in an arithmetic series, the pk'S themselves 
are in a geometric series. The sum of the pk'S must 
equal one, so that 

6 

p l = l /  ~, r(k-l)=(r--1)/(r6--1), (10) 
k = l  

and the expected value of the number of spots is 

6 

(S )=p l  ~ kr ~k-~), (11) 
k = l  

which reduces to 

(S)=(1-7r6+6r7)/[(1-r)(1-r6)], (12) 

in agreement with Jaynes's (1979) result. 
(S) is a monotonically increasing function of r, the 

ratio of two of the probability densities, and the value 
of r corresponding to any value of (S) between one 
and six can be found by finding a root of a seventh- 
degree polynomial. In the macromolecular crystal- 
lography problem, of course, the number of pixels is 
of order 106 rather than six, but a number of principles 
seen in the die problem still apply. If only one quantity 
in addition to the overall normalization is con- 
strained, the logarithms of the densities at every point 
for the maximum-entropy distribution are linear func- 
tions of the logarithms of the densities at only two 
points, and the normalization is a straightforward 
linear scaling. When the partial derivatives of the 
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second constraint function with respect to the pixel 
densities are on a linear scale, the corresponding 
densities are on an exponential scale, which tends 
to sharpen peaks and flatten valleys in the density 
distribution. Further, because exp (x) is positive for 
all x, the density distribution must necessarily be 
everywhere positive. 

We shall now consider the question of a suitable 
constraint function to use for phase extension. Sup- 
pose the partial derivative of a constraint function 
with respect to the density in the kth pixel, Pk, is a 
linear function of the density, p~O), in a trial distribu- 
tion before maximizing entropy, 

of(p)/Opk = a + bp(k °), (13) 

and suppose further that the pixels have been ordered 
in such a way that p]O)¢ p~O). Then (1 1) 

V =  (14) 
a+bp~ °) a+bp(f  ) 

is non-singular, and 

((a+bp ( 2 ° ) l / A  - l / A ]  (15) 
v-'= _(a+bp~O))/a l/A/' 

where za = V= - V2~ = b(p(2 °) - p~O)). The first 
two elements of a typical row of Z are then 

_ (o) (o) (o) (o) 
Z ( k - 2 ) , ,  - -  ~ ( P 2  ~0 Pk )/0 ( /92 - -  Pl ), and  Z ( k - 2 ) , 2  - -  
- ( p ~ ) - p ]  ))/(p~ ) - p ]  )), which are independent of 
both a and b, so that any such function will give the 
same Z matrix as the simplest one for which a = 0 
and b--1.  Any function that is quadratic in Pk will 
meet the conditions for this to be, true when evaluated 
at p=  p(o), and, because I Fcl is linear in Pk, many 
functions of IF cl 2 fall in this class. Consider, for 
example, the function 

E ( O ) = (  ~ IFJ c ° s ( 2 7 r h j ' r - % ) )  (16) 

the expected value for the density distribution p(r) 
of a Fourier density map computed from some subset 
of observed amplitudes and previously determined 
phases. Because the expected value of a sum is the 
sum of the expected values of its terms, and, if % is 
the correct phase for Fj, (cos(27rhj.r-%))--lFj , 
this reduces to 

M 
E ( p ) =  2 [Fjl 2 (17) 

j = l  

in the limit of correct phases. Now 

M 

OE(p)/Opk = ~ [Fjlcos(2~rhj.rk--~0j)=p~ °), (18) 
j = l  

so that entropy is maximized for constant E ( [ )  by 
p(r) such that 

In pk=[(p~2°)--p~ °)) In p]O) 

+(p~O)_p~O)) In p2]/(p~°)-p~°)), (19) 

where p(2 °) and p~O) are the densities in any pair of 
pixels such that (p(2 ° ) -  p]O)) ¢ 0. 

Equation (19) gives a density distribution that 
maximizes entropy for constant E(p) but not 
necessarily for E (p )=21F ; I  2. E(p) is, however, 
a smooth monotonically increasing function of 
x = (ln p2-1n Pl) = In (P2/P]). If we set Zk = 
(p(kO)--p~O))/(p(20)--p]O)), equation (19)can be written 

In Pk = In p] + ZkX, (20a) 

or, if we set the scale to give the correct value of 
F(000), 

N 

pk=[NF(OOO)/V]exp(zkx ) /~  exp(zjx). (20b) 
j = l  

Now 

and 

N 

E(o)= E A°)p~ 
k = l  

N 
= [ NF(O00)/V] Y. p~O) 

k = l  

N 

Xexp(zkX)/  ~ exp(zkX), 
k = l  

(21) 

dE(p)/dx=[NF(OOO)/V] zkp~ °) 
1 

x exp (ZkX exp (ZkX) 
1 

- 2 exp (ZkX) Zk exp (ZkX) 
k = l  k = l  

IN ,]2} x Z exp (ZkX • (22) 
k = l  

With these relations, the equation E ( p ) =  Y.IF [2 can 
easily be solved to any desired precision by the use 
of standard numerical methods. A distribution given 
by (19) has maxima, minima and saddle points in the 
same places as p(°)(r), but the peaks are sharper, and 
the valleys are broader and flatter. The density must 
necessarily be everywhere positive, as is required for 
a maximum-entropy density. It should be noted that 
the representation of density as an exponential func- 
tion is a basic requirement of Bricogne's (1984) 
maximum entropy, equations. Furthermore, Collins 
& Mahar (1983a) have discussed this representation 
from a more practical viewpoint and have ~uggested 
that it can be a better representation of density than 
that given simply by a truncated Fourier series. Fig. 1 
shows the result of the application of entropy maxi- 
mization starting from p(°)(x) = 1 + 21Flcos (2,nx/a) 
for various values of I F I- The peak gets increasingly 
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sharp as I F I gets larger, approaching a delta function 
as IF[ approaches 1.0. 

On the assumption that a density map at slightly 
higher resolution will differ from this one only in 
detail, phases calculated from the Fourier transform 
of p(r) may be used with the observed amplitudes to 
compute a new p(O) at somewhat higher resolution. 
Repeated application of this procedure at increasing 
resolution should ultimately lead to an everywhere- 
positive density distribution that is compatible with 
the amplitudes of all observed reflections. There is 
no guarantee, however, that it will not suffer from 
the lack of uniqueness identified by Bricogne (1984). 
That problem may be reduced by combining entropy 
maximization with molecular envelope definition and 
solvent flattening, as described by Wang (1985). A 
unified procedure then goes as follows: Start with a 
small set of phases, including three to define the 
origin, one to choose an enantiomorph, any available 
structure invariants and any others that have been 
determined by isomorphous replacement etc., and 
with the observed amplitudes, and compute a low- 
resolution density map. Identify the molecular 
envelope and set the density in the solvent region 
constant. Within the envelope, find the pixels contain- 
ing the minimum and maximum densities, and use 
the maximum density as p2. If the minimum density 
is greater than a fraction, say 0.1, of the maximum 
density, use it as p,.  Otherwise, set pl arbitrarily equal 
to 0"lp2. In either case, use the densities in those 
pixels as p~2 °) and p~O~. This results in all values of zk 
lying in the range from zero to one. Apply (19), and 
multiply the densities in all pixels by a constant factor 
to restore the overall normalization. The ratio P2/P~ 
is adjusted by application of the Newton-Raphson 
procedure to make E(p) closer to the starting value, 
with the application of (19) and the renormalization 
then being repeated. Because the main objective is to 
determine phases that will lead to a non-negative 
density map at higher resolution, a rather crude solu- 
tion to this one-dimensional fitting problem is accep- 
table, particularly in the early stages. Observation 

Q 
LO 

~ 0 

O. 

O. 

IFI : 0 9 - - - -  / 
\ l~'l = o , 6 - -  

\ IF'I = 0 . 3 -  
/ , t 

" \  / .  

0.25 0 50 0 7 5  
J£ / a  

Fig. 1. Maximum entropy distributions, p(x), corresponding to 
p(°)(x)=l+2lFlcos(2rrx/a) for IFI=0.3, 0.6 and 0.9. The 
peaks get sharper and the valleys get flatter as I FI increases. 

has shown, however, that the Newton-Raphson 
algorithm converges extremely rapidly. The modified 
density map is then Fourier transformed, and a new 
set of phases is computed, both for the reflections 
already used and some new ones. The whole pro- 
cedure is then repeated until all reflections have been 
included, and all amplitudes and phases have con- 
verged to stable values. 

Results 

The maximum entropy procedure was coded as a 
subroutine in Fortran 77 in such a way that it could 
be easily incorporated in the commonly used density 
modification system described by Wang (1985). 
(Source code for this subroutine may be obtained at 
no charge from EP or LS.) 

As a test of the procedure, we wanted to use a data 
set that contained phases to a nominal resolution of 
2.~ or better. Ribonuclease A was chosen because 
its structure has been established to a high degree of 
precision (Wlodawer & Sj61in, 1983; Svensson, Sj61in, 
Gilliland, Finzel & Wlodawer, 1987; Wlodawer, 
Svensson, Sj61in & Gilliland, 1988). Fig. 2 is a sche- 
matic diagram of the procedure followed. In the first 
step the original phases were subjected to two cycles 
of density modification to get the maximum-entropy 
solution from what we consider to be the true struc- 
ture. An appropriate envelope was then calculated. 
The same envelope was kept throughout the remain- 
der of the investigation because our aim was to test 
how the procedure would work when the molecular 
object was known, and thus the position and the 

PHASES 
, , 

s 

PSFLT 

ENVELP 

OR I 

I ,MAX ENTROPY 

, 

Fig. 2. A schematic diagram of the central program system accord- 
ing to Wang (1985) into which the maximum entropy routine 
has been inserted. SIRSAS loads phases into the general files; 
FSFOR performs direct-space Fourier synthesis; ENVELP 
calculates the molecular envelope; DSFLT performs direct- 
space filtering; MAX ENTROPY maximizes the entropy of the 
map; FORINV performs Fourier inversion; and PSFLT is a 
reciprocal-space filtering program. 
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Table 1. Summary of density modification according 
to Wang (1985), combined with maximum entropy 
calculations for phase extension in native Ribo- 

nuclease A 

Note  that  'map  type '  contains informat ion  about  the route  in Fig. 2 
that  was chosen.  F.o.m. indicates mean figure o f  merit. 

Cycle R Phase 
number  Resolut ion value F.o.m. shift Map  type 

1 5.0 0.255 0-71 16.4 Fo(DSFLT) 
2 5.0 0.207 0.73 19"5 2Fo- F,,(MAX) 
3 4.5 0.224 0-72 14.1 Fo(DSFLT) 
4 4"5 0.162 0"80 10-8 2Fo-Fm(MAX) 
5 4"0 0"191 0"76 8"1 Fo(DSFLT) 
6 4"0 0"140 0"83 7"2 2Fo-Fm(MAX) 
7 3.5 0-177 0.78 6.0 F~(DSFLT) 
8 3"5 0.125 0.84 6-3 2Fo-Fm(MAX) 
9 3.2 0.195 0-76 9.7 Fo(DSFLT) 

l0 3.2 0.141 0.82 9.0 2Fo- F,,(MAX) 
11 2.7 0.172 0.78 6.1 Fo(DSFLT) 
12 2.7 0.123 0.84 5.8 2Fo-Fm(MAX) 
13 2"3 0"162 0"81 4"2 Fo(DSFLT) 
14 2-3 0.128 0.83 5.2 2Fo-Fm(MAX) 
15 2"0 0"153 0"83 3"5 Fo(DSFLT) 

shape could be established to a high degree of pre- 
cision. [The choice of envelope may prove to be the 
most important constraint in density modification 
(Schevitz, Podjarny, Zwick, Hughes & Sigler, 1981; 
Bhat & Blow, 1983; Podjarny, Bhat & Zwick, 1987). 
It remains to be seen how sensitive the phase 
extension procedure is to variations in the molecular 
boundary.] Two Fourier Foac maps, using data to 2.0 
and 5.0 A resolution respectively, were calculated 
and contoured at a l tr level. These contoured maps 
served as a reference with which later maps were 
compared. Phases to higher resolution than 5.0 
were then stripped from the original data set and 
treated as unknown in the preliminary set up of the 
Wang density modification procedure. A series of 
calculations was then initiated according to the 
scheme in Fig. 2. During this series the resolution 
was extended in 15 steps; the parameters used and 
varied are summarized in Table 1. In each step an R 
value, defined as Y, II Fol-IFm IIlElFol, where Fm is 
the structure factor calculated by inversion of the 
modified map, and mean figure of merit as defined 
by Sim (1959) were calculated. (In principle, because 
the problem is underdetermined, it should be possible 
to reduce the R value to zero at each stage of phase 
extension. In practice, however, it appears to be 
unnecessary to iterate to full convergence to obtain 
a satisfactory set of new phases.) In alternate steps a 
2Fo- Fm map was calculated instead of an Fo map 
in order to force Fm to become as close as possible 
to Fo. When the phases had been extended from 5-0 
to 2.0 ~ ,  a Fourier Foac map was calculated and 
contoured. Fig. 3 shows a portion of each of three 
maps, one from the refined structure at 2.0 A resolu- 
tion, one with all reflections with resolution higher 
than 5.0 A omitted, and the third with phases exten- 
ded back to 2.0,~ resolution by the maximum- 

entropy procedure. As can be seen, the result from 
the phase extension procedure is in very good agree- 
ment with the original map. A calculation of the 
differences between the original phases and the exten- 
ded phases revealed an average shift of roughly 35 ° . 

The procedure was also tested on two unknown 
protein structures, fragment 1 from bovine prothrom- 
bin (see Fig. 4), in which the initial phases were 
obtained from multiple isomorphous replacement 
data, and fragment TR2C from bull testis calmodulin, 
where the phases were determined by the application 
of rotation functions to the published atomic coordin- 
ates for troponin-C (Herzberg & James, 1985). Each 
phase set was subjected to entropy maximization 
according to the scheme in Fig. 2, except that the 
molecular envelope was recalculated several times 
during the course of the calculations. In each case 
the quality of the map improved dramatically, and 

tw d 

, 

! @ o o 9 o 

/ 
(a) 

7 No 
(b) 

• . -  

(c) 
Fig. 3. Overlaid sections of  electron density maps  from native 

r ibonuclease A. (a)  Map with phases to 2 .0 .~  resolution.  (b) 
Map with phases to 5.0 .~. (c) Map with phases ex tended  from 
5.0 to 2.0/1,. 
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the structure determination could then proceed in a 
straightforward manner. More detailed descriptions 
of these applications will be published later (SjSlin, 
Alenljung, Svensson & Prince, 1988; SjSlin & 
Svensson, 1988). 

The authors would like to thank D. M. Collins for 
a critical reading of the manuscript and many helpful 
suggestions. 

(a) 

• 

(b) 
Fig. 4. Overlaid sections of electron density maps for calcium- 

containing fragment 1 of bovine prothrombin. (a) An Fo map 
with MIR phases to 3.2 ,~. (b) Map with phases extended to 
2.4,~ by solvent flattening and maximum entropy. Noise level 
in both maps set at lo" level. 
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Abstract 

The approach by Harker & Kasper [Acta Cryst. 
(1948), 1, 70-75] which led to the first inequality 
relationships between structure factors has not pre- 

0108-7673/88/020222-04503.00 

viously been applied to the space group P1 and there 
seems to have been a view that it could not give useful 
results for that space group. The idea has also been 
advanced that Harker-Kasper inequalities are con- 
tained within the complete set of determinantal 
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